avia.wikisort.org - Design

Search / Calendar

In aerodynamics, the Prandtl–Meyer function describes the angle through which a flow turns isentropically from sonic velocity (M=1) to a Mach (M) number greater than 1. The maximum angle through which a sonic (M = 1) flow can be turned around a convex corner is calculated for M = . For an ideal gas, it is expressed as follows,

Variation in the Prandtl–Meyer function (
  
    
      
        ν
      
    
    {\displaystyle \nu }
  
) with Mach number (
  
    
      
        M
      
    
    {\displaystyle M}
  
) and ratio of specific heat capacity (
  
    
      
        γ
      
    
    {\displaystyle \gamma }
  
). The dashed lines show the limiting value 
  
    
      
        
          ν
          
            max
          
        
      
    
    {\displaystyle \nu _{\text{max}}}
  
 as Mach number tends to infinity.
Variation in the Prandtl–Meyer function () with Mach number () and ratio of specific heat capacity (). The dashed lines show the limiting value as Mach number tends to infinity.

where is the Prandtl–Meyer function, is the Mach number of the flow and is the ratio of the specific heat capacities.

By convention, the constant of integration is selected such that

As Mach number varies from 1 to , takes values from 0 to , where

For isentropic expansion,
For isentropic compression,

where, is the absolute value of the angle through which the flow turns, is the flow Mach number and the suffixes "1" and "2" denote the initial and final conditions respectively.


See also



References






Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии