avia.wikisort.org - Waffe

Search / Calendar

Wasserfall war der Name einer deutschen Flüssigkeitsrakete, die als Flugabwehrrakete ab 1943 entwickelt wurde. Ab 1944 fanden etwa 40 Probeflüge statt. Die Rakete sollte zur Unterstützung von Flak-Batterien gegen hochfliegende Bomber bis zu einer Entfernung von 48 km dienen. Nach dem Krieg war sie eine der Grundlagen zur Entwicklung der ersten amerikanischen und sowjetischen Flugabwehrraketen.

US-Replik einer Wasserfall, „Hermes A1“
US-Replik einer Wasserfall, „Hermes A1“

Hintergrund


Start einer Wasserfall von der „Startstelle Strand“ beim Prüfstand IX in Peenemünde, Herbst 1944
Start einer Wasserfall von der „Startstelle Strand“ beim Prüfstand IX in Peenemünde, Herbst 1944

Bereits Ende 1942 begann sich die alliierte Luftüberlegenheit abzuzeichnen. Viele deutsche Piloten kamen in der Luftschlacht um England um oder wurden gefangen genommen. Gegen die in großen Höhen einfliegenden viermotorigen Bomber waren besonders die einmotorigen Jagdflugzeuge Bf 109 und Fw 190 wenig effektiv, da deren Flugmotoren oberhalb der Volldruckhöhe nicht ausreichend leistungsfähig waren. In den Entwicklungsbüros wurde daher von der „Kolbenmotorkrise“ gesprochen. Die Motoren waren hochgezüchtete Weiterentwicklungen, die besonders beim Betrieb mit Verfahren zur kurzzeitigen Leistungssteigerung wie der Einspritzung von Lachgas (GM-1) oder eines Methanol-Wasser-Gemisches (MW-50) lediglich etwa 50 Stunden zuverlässig funktionierten. Der Bedarf an qualitativ hochwertigem Stahl, der zu den knappen Ressourcen gehörte, konnte im Verlauf des Krieges immer weniger gedeckt werden. Zudem gab es zu wenig hochoktaniges Flugbenzin, das für leistungsfähige Motoren nötig ist.

Das Ziel der Luftabwehr ist es, Schaden vom zu verteidigenden Ziel abzuwenden. Dies kann geschehen, indem der Angreifer unschädlich gemacht oder zum Ausweichen gezwungen wird und so die Trefferquote herabgesetzt wird. Ein Ausweichen in größere Flughöhen bedeutet dabei eine Reduktion der Bombenlast und eine Verringerung der Trefferwahrscheinlichkeit. Die genannten Gesichtspunkte machten einen ferngelenkten oder rechnergesteuerten Lenkflugkörper zu einer naheliegenden und realistischen Problemlösung. Im Deutschen Reich waren in der V-Waffen-Entwicklung, bei Torpedos und Raketentriebwerken bereits entsprechende Erfolge erzielt worden, um eine Rakete realisieren zu können.

Die Entwicklung der Wasserfall-Rakete, wie auch der anderen Flugabwehr-Raketenprojekte (Schmetterling, Enzian – beides mit Flügeln versehene Projekte für den Unterschallbereich – und Rheintochter) wurde im Rahmen des Vesuv-Programms durchgeführt. Die entsprechenden Projekte wurden zwischen 1940 und 1945 insgesamt zwölfmal begonnen und wieder gestrichen.[1]


Anforderungen



Realisierung



Antrieb


Von vornherein ausgeschlossen waren die Walter-Antriebe (z. B. Walter HWK 109-509 der Me 163), Feststofftriebwerke sowie die mit Flüssigsauerstoff arbeitenden Flüssigkeitsraketentriebwerke, da diese nicht für eine startbereit auf einer Lafette ruhenden Rakete geeignet waren. Die beiden Komponenten des Walter-Antriebs (T-Stoff mit 80 % Wasserstoffperoxid und C-Stoff mit unter anderem 30 % Hydrazinhydrat) waren in ihrer Handhabung höchst kritisch und daher schlecht enttankbar. Zudem zersetzte vor allem das Wasserstoffperoxid sehr schnell alle bis dahin bekannten Anlagen. Edelstähle wiederum waren für eine „Wegwerf-Waffe“ zu ressourcenkritisch. Feststoffraketen zeigen bei langer Lagerung eine Veränderung des Abbrandverhaltens. Verdichtet sich das Treibmittel, so brennt es zu rasant ab und der steigende Druck in der Brennkammer zersprengt die Rakete im Flug. Der bei der V2-Rakete eingesetzte Flüssigsauerstoff ist ein schwierig handhabbarer Stoff, da er schnell verdampft und explosive Gemische bildet. Zudem war es praktisch unmöglich, eine Rakete unter Gefechtsbedingungen – etwa bei einem anfliegenden Bomberschwarm – mit dem Treibstoff Ethanol zu betanken, da dieser nach dem Eintanken erst retemperiert werden musste. Um den Kraftstoff im Entwarnungsfall wieder abpumpen zu können, wäre eine eigene Einrichtung sowie eine Tankentlüftung an der Rakete nötig gewesen. Jedoch wäre selbst mit derartigen Einrichtungen das Abpumpen und Neubetanken nur schwer durchführbar gewesen.

Bei der Wasserfall entschloss man sich zur Verwendung eines hypergolischen Zweikomponenten-Flüssigtreibstoffs. Eine kleine Druckluftflasche sollte beim Start die Tanks mit Überdruck versorgen. Tankpendel waren unnötig, da die Rakete weder rollen (wie die Katjuscha) noch in den Horizontalflug übergehen sollte und daher immer im positiven G-Bereich bleiben würde. Als Kraftstoff wurde eine Visol- und SV-Stoff-Mischung gewählt. SV-Stoff (10 % Schwefelsäure + 90 % Salpetersäure) war in der Sprengstoffindustrie weit verbreitet und in ausreichender Menge vorhanden, Visol (Isobutylvinylether + Anilin) war auch aus der Kraftstoffdestillation (Kohle-Verflüssigung) als Nebenprodukt zu beziehen. Der damit zu erreichende Schub genügte vollkommen, um die Anforderungen zu erfüllen.


Bauweise


Wie aktuelle Flugkörper (z. B. die Sidewinder) wurde die Wasserfall in Sektionsbauweise konstruiert. Die Fertigung der Tanksektion konnte in Handwerksbetrieben durchgeführt werden. Der Sprengkopf entsprach einer damals aktuellen Luftmine; einzig der Raketenmotor und der Flugrechner waren spionagekritisch. Um den Zusammenbau zu vereinfachen, durften keine Kabelbäume oder Seilzüge nötig sein. Das war nur dadurch erreichbar, dass jede Sektion der Waffe eine absolute Aufgabenpriorität besaß:

Diese scharfe Trennung der Aufgaben sollte bewirken, dass die Wasserfall schnell, einfach und dabei fehlerfrei am Einsatzort montierbar war. Die Zerlegbarkeit erleichterte den Transport sowie die Lagerung in Luftschutzbauten und den Zusammenbau ohne Kran oder Hubeinrichtung etc.

Die Sektionsbauweise bot der Waffe gute Weiterentwicklungsoptionen, denn solange Schwerpunkt und Gesamtmasse gleich blieben, konnte jede einzelne Sektion unabhängig von den anderen in Bezug auf deren Wirtschaftlichkeit in Fertigung und Einsatz sowie hinsichtlich einer Kampfwertsteigerung weiter verbessert werden. Personal, technisches Gerät, Test-Aufbauten für eine Abstimmung der einzelnen Komponenten aufeinander sollte unnötig sein und gleichzeitig die Flugeigenschaften immer konstant und voraussagbar ausfallen.


Startablauf


Die Wasserfall war dafür ausgelegt, bei Bedarf wochenlang wartungsfrei und startbereit auf der Lafette zu stehen. Vor einem Start musste sie dann nur noch von der Tarnung befreit und aktiviert werden. Dazu wurden, ähnlich einem Torpedo, zunächst die Kreisel gestartet und auf Nullwert kalibriert. Anschließend wurden die Tanks unter Druck gesetzt (zuerst das Visol, dann das SV) und die Dichtigkeit überprüft. Da die Rakete immer senkrecht gestartet wurde, musste nun der Zielanflugwinkel im Kursrechner programmiert werden. Dazu war die genaue Kenntnis von Position und Flugrichtung der anvisierten Bomber wichtig. Dies waren allerdings Aufklärungsdaten, die nach der Landung der Alliierten in der Normandie nicht mehr lückenlos zur Verfügung standen, was die gesamte Bomberabwehr beeinträchtigte. Wenn Bomber und vorausberechneter Zielvektor sich überschnitten, wurde der Sprengkopf entsichert und die Waffe abgefeuert. Bei der Annäherung an das Ziel erkannte die Rakete eine Änderung des Magnetfelds und zündete den Sprengkopf.


Entwicklungsgeschichte


Hermes-A1 (US-amerikanischer Nachbau der Wasserfall-Rakete)
Hermes-A1 (US-amerikanischer Nachbau der Wasserfall-Rakete)

In der Erprobungsstelle der Luftwaffe „Peenemünde-West“ erfolgte die Erprobung der Rakete unter der Federführung von Walter Thiel. Die ersten Modellversuche ab März 1943 verliefen vielversprechend. Durch Thiels Tod bei dem Angriff der britischen Luftwaffe (Operation Hydra) auf die Heeresversuchsanstalt und die Erprobungsstelle Mitte August 1943 wurde das Projekt um Monate zurückgeworfen. Der erste Start am 8. Januar 1944 misslang. Die Rakete durchbrach die Schallmauer nicht und erreichte so nur eine Gipfelhöhe von etwa 7000 m. Dieses Fehlverhalten von Rakete und Steuerung war jedoch vorausgesehen worden; als Resultat flossen neue Ideen in den nächsten Prototypen ein. Der erste erfolgreiche Start fand am 29. Februar 1944 statt. Die Rakete erreichte eine Geschwindigkeit von 2772 km/h in vertikaler Fluglage, und bei 20 km Höhe war der Kraftstoff verbraucht.

Bis zum Kriegsende wurden 50 Prototypen gebaut, mit denen Flug- und vor allem Steuerstudien durchgeführt wurden. 40 Probestarts sind dokumentiert. Ende Februar 1945 wurde die Fertigung zugunsten der V2-Rakete eingestellt.


Nach dem Krieg


Mit der Operation Unicorn (Unternehmen Einhorn) gelang es den USA, die Pläne und Modelle zu erbeuten und deutsche Wissenschaftler im Rahmen der Operation Paperclip zu verpflichten. Nach dem Krieg wurden in den USA zu Erprobungszwecken Kopien der Wasserfall-Rakete unter der Bezeichnung Hermes-A1 getestet.[2] Die Sowjetunion begann die Rekonstruktion im Institut Berlin und führte sie dann nach der Aktion Ossawakim mit Prototypen der R-101[3] und R-108 in Podlipki und Gorodomlija weiter.


Technische Daten


Kaliberzeichnung der „Wasserfall“-C2/E2-Rakete
Kaliberzeichnung der „Wasserfall“-C2/E2-Rakete

Bewertung


Die Rakete zeichnete die Entwicklung der folgenden Jahrzehnte vor, wobei die Raketen der Abwehr hochfliegender strategischer Bomberverbände dienen und Rohrwaffen wie zum Beispiel Schilka (ZSU-23-4) oder Flugabwehrkanonenpanzer Gepard dem Objektschutz gegen Tiefflieger oder Hubschrauber.

Ein Vergleich mit der V2 des V-Waffenprogramms ist nicht sinnvoll. Beide entstanden zwar in Peenemünde als deutsche Raketen im Zweiten Weltkrieg. Sie wurden jedoch von völlig eigenständigen Arbeitsgruppen entwickelt, hatten andere Zielsetzungen und nutzten andere technische Prinzipien (Antriebe, Kraftstoffe, Kursrechner etc.). Die V-Waffen-Produktion hatte jedoch von Hitler und Speer in Bezug auf Ressourcenkalkulation, Personal (und auch Zwangsarbeiterzuteilung) wie auch anderen Rahmenbedingungen den Vorzug.

Nach dem Krieg floss die Wasserfall-Technologie in die Entwicklung mehrerer Nationen ein:[4]


Siehe auch



Literatur




Commons: Wasserfall – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise


  1. Boelcke, Deutsche Rüstung, 1969, S. 340.
  2. Hermes A-1. In: Astronautix. Abgerufen am 27. April 2020 (englisch).
  3. Wasseerfall. In: Astronautix. Abgerufen am 27. April 2020 (englisch).
  4. Norbert Brügge: The history of post-war rockets on base German WW-II "Wasserfall" missile propulsion (engl.) (eingesehen am 7. Oktober 2019)

На других языках


- [de] Wasserfall (Rakete)

[en] Wasserfall

The Wasserfall Ferngelenkte FlaRakete (Waterfall Remote-Controlled A-A Rocket[1]: 77 ) was a German guided supersonic surface-to-air missile project of World War II. Development was not completed before the end of the war and it was not used operationally.

[fr] Wasserfall

Le Wasserfall Ferngelenkte FlaRakete[1], était un missile surface-air de la Seconde Guerre mondiale développé à Peenemünde en Allemagne. Malgré des études et un développement très avancés, il n'est jamais entré en service.

[it] Wasserfall

Il Wasserfall Ferngelenkte Flakrakete, è stato un grande missile antiaereo tedesco della seconda guerra mondiale, come gli altri della sua categoria non fece in tempo ad entrare in servizio ma era un'arma imponente, simile al SA-2, con una gittata calcolata addirittura di 48 km. I suoi progetti furono da modello per il missile statunitense Hermes-A1 e per il programma di ricerca sovietico noto con la denominazione di R-101.

[ru] Вассерфаль

«Вассерфаль» (нем. Wasserfall — «Водопад») — первая в мире зенитная управляемая ракета (ЗУР), создана в 1943—1945 гг. в Германии. Техника, положившая основу советских систем ПВО страны была складирована в районе города Дмитров.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.org - проект по пересортировке и дополнению контента Википедии